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Figure 1: Filtered hard shadows produced by various techniques. Moment shadow mapping provides a high quality heuristic for the result of
percentage closer filtering using one shadow map sample per fragment and 64 bits per shadow map texel. Variance and exponential shadow
mapping are faster requiring only 32 bits per texel but produce more artifacts (red arrows). Rendering without shadows takes 0.64ms.

Abstract

We present moment shadow mapping, a novel technique for fast,
filtered hard shadows. Like variance shadow mapping it allows for
the application of all kinds of efficient texture filtering and antialias-
ing to its moment shadow map. However it is designed to provide a
substantially higher quality. Moment shadow maps store four mo-
ments of the depth within the filter kernel. Using this information,
our efficient algorithm computes the sharpest possible lower bound
as approximation to the shadow intensity. The choice to compute
such a bound using four moments is based upon an automated eval-
uation of thousands of alternatives and thus known to be optimal.
To reduce memory and bandwidth requirements we present an opti-
mized quantization scheme to allow 16-bit quantization of moment
shadow maps. Our evaluation demonstrates that moment shadow
mapping produces high quality results with a single shadow map
sample per fragment using 64 bits per shadow map texel.
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1 Introduction

The faithful rendering of fully dynamic, hard shadows is a feature
of great importance in interactive 3D graphics. Shadows help the
understanding of the structure of scenes and contribute strongly to
the perceived realism. On the other hand, shadow computation can
cost a big portion of the available frame-time budget and results
often exhibit aliasing nonetheless. This is particularly true for tech-
niques based on shadow mapping [Williams 1978], which is the
prevalent approach due to its excellent hardware support and pre-
dictable run time.
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Percentage closer filtering [Reeves et al. 1987] reduces the prob-
lem of aliasing by applying an appropriate reconstruction filter, thus
smoothing the shadow boundary. Since the shadow depends upon
the depth in shadow map space, this filtering can only be done per
shaded fragment and efficient techniques for precomputation of fil-
ter kernels cannot be applied. This means that dozens of shadow
map samples are needed per fragment leading to a poor run time.

A variety of heuristic techniques has been developed to overcome
this problem [Donnelly and Lauritzen 2006; Annen et al. 2007;
Salvi 2008; Annen et al. 2008; Lauritzen and McCool 2008]. All of
them replace the depth values commonly stored in the shadow map
by some depth-dependent, low-dimensional vector. Taking a single
filtered sample from such a modified shadow map allows for an ap-
proximate reconstruction of the depth-dependent shadow intensity.
All these techniques suffer from some characteristic artifacts and
generally offer different trade-offs between quality, memory foot-
print and run time.

In this context, our main contribution is moment shadow mapping,
a new heuristic providing a substantial quality improvement. This
is achieved using a shadow map with four channels storing z, z2, z3

and z4 where z is the depth of occluders. Our efficient algorithm,
presented in Sections 4.1 and 4.2, uses a single filtered sample from
such a shadow map to compute the darkest possible shadow without
ever overestimating the shadow. To reduce memory requirements,
Section 4.3 describes an optimized quantization scheme enabling
use of 16-bit integers for the channels of the shadow map.

The choice to store this particular data in the shadow map originates
from our systematic analysis of thousands of alternatives in Sec-
tion 3. We demonstrate that any choice of data immediately leads
to a well-defined heuristic. Although most of these candidates do
not admit efficient real-time algorithms, we introduce a numerical
method efficient enough to evaluate them on a test data set.

Our evaluation in Section 3.2 reveals that many candidates perform
similarly well and that moment shadow mapping is only slightly
worse than the best found technique, which we dub trigonomet-
ric moment shadow mapping. This technique does admit a moder-
ately efficient real-time algorithm but it does not compare favorable
against moment shadow mapping in terms of stability and run time.

As can be seen from Figure 1 and the evaluation in Section 5, mo-
ment shadow mapping provides high quality results while inheriting
all positive traits of other shadow mapping techniques, which allow
for precomputation of filter kernels. This is achieved at a moderate
memory consumption of 64 bits per shadow map texel.
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2 Related Work

The prevalent techniques for rendering dynamic shadows build
upon either Monte Carlo ray tracing [Cook et al. 1984], shadow
volumes [Crow 1977] or shadow mapping [Williams 1978]. An ex-
cellent overview of the many aspects of rendering shadows in real-
time can be found in [Eisemann et al. 2011]. In this work we focus
on the efficient filtering of hard shadows generated with shadow
mapping and applications thereof.

Shadow mapping generates hard shadows by exploiting that lit sur-
faces are visible to the light source. Using the light source as point
of view, the scene is rendered to a shadow map which stores image-
space depth values. Projecting the shadow map onto the scene and
comparing the stored depth values to the actual depth values allows
for an efficient shadow test. However, this image-based approach
is prone to aliasing and to discretization artifacts known as surface
acne. The latter can be counteracted through scene-dependent bi-
asing of depth values [Dou et al. 2014].

A particularly problematic type of aliasing is undersampling, which
leads to jagged shadow boundaries. Various techniques diminish
this problem by intelligently sampling different parts of the shadow
map at different resolutions. Trapezoidal shadow maps [Martin
and Tan 2004] optimize a single projection matrix. Sample dis-
tribution shadow maps [Lauritzen et al. 2011] split the view frus-
tum by exploiting knowledge from a screen-space depth buffer and
then compute bounding boxes for the visible fragments to obtain a
tight shadow map frustum for each split. Virtual shadow maps for
many lights [Olsson et al. 2014] decide which part of which omni-
directional shadow map needs to be rendered at which resolution in
each frame.

Nonetheless, the elimination of aliasing artifacts requires filtering.
Percentage closer filtering (PCF) [Reeves et al. 1987] achieves this
by sampling the shadow map within an appropriate filter kernel,
performing the shadow test for each sample and filtering the result-
ing shadow intensities. This can only be done per shaded fragment
because the shadow test is a depth-dependent operation.

Variance shadow mapping (VSM) [Donnelly and Lauritzen 2006]
uses a modified shadow map containing the depth and the squared
depth. Given a filtered sample the mean and variance of the depth
within the filter kernel can be derived. This allows for evaluation
of Chebyshev’s inequality, which provides a lower bound to the
percentage of depth values closer than the fragment. This bound is
used as approximation to PCF.

Similarly, convolution shadow mapping (CSM) [Annen et al. 2007]
stores M complex Fourier coefficients of the shifted unit step func-
tion used for the shadow test. A filtered sample provides Fourier
coefficients of the depth-dependent shadow intensity within the fil-
ter kernel and a truncated Fourier series can be used to approximate
it. This technique can produce arbitrarily good results at the ex-
pense of very high memory requirements.

Exponential shadow mapping (ESM) [Salvi 2008; Annen et al.
2008] stores exp(c · z) where c � 1 is a constant and z is the
occluder depth. Then the Markov inequality is used to compute an
approximating lower bound to the result of PCF. For various failure
cases a fallback to PCF is suggested.

ESM generally produces a high quality on the hindmost receiver of
partial shadow and in fully shadowed regions but behaves unstably
at the boundary of shadow receivers. Conversely, VSM produces
light leaking in fully shadowed regions if the variance within the
filter kernel is high (Figure 1). To combine the strengths of both
techniques, exponential variance shadow maps (EVSM) [Lauritzen

2008] use VSM with exp(c · z), exp(c · z)2, as well as exp(−c ·
z), exp(−c · z)2 and use the darker shadow.

To reduce light leaking of VSM in complex scenes, layered vari-
ance shadow maps (LVSM) [Lauritzen and McCool 2008] partition
the depth interval intelligently and use separate variance shadow
maps for each interval.

While the heuristic approach and the increased memory footprint
are obvious drawbacks compared to PCF, all these techniques also
share some advantages. Most importantly, arbitrary linear filtering
operations can be applied to the corresponding shadow maps. This
includes multisample antialiasing, mipmapping, anisotropic filter-
ing and low-pass filters such as a two-pass Gaussian [Donnelly and
Lauritzen 2006]. This way, a single filtered sample can be obtained
efficiently and the costly sampling procedure of PCF is avoided.

Alpha blending is a linear operation as well and therefore the
restriction of PCF to opaque shadow casters can be overcome.
Fourier opacity mapping [Jansen and Bavoil 2010] builds upon
CSM to generate shadows for participating media such as smoke.
This approach is also compatible with other techniques such as
VSM or our novel technique.

Efficient filtering of hard shadows also enables approximate soft
shadows generated by area lights of moderate extent. Percentage-
Closer Soft Shadows [Fernando 2005] first performs a blocker
search in the shadow map to determine the average distance be-
tween occluder and receiver. This is used to estimate the size of the
penumbra and then PCF with a corresponding kernel radius pro-
duces it. Variance soft shadow maps [Yang et al. 2010] generate
a summed area table for a variance shadow map. This allows a
heuristic blocker search and shadow filtering in constant time. To
overcome shortcomings of VSM, an adaptive sampling scheme us-
ing knowledge from a hierarchical shadow map is proposed.

Volumetric obscurance [Loos and Sloan 2010] demonstrates that
the approach of variance shadow mapping can also be transferred
to the realm of screen-space ambient occlusion.

3 Filterable Shadow Maps

To systematically search for new heuristics for filtered hard shad-
ows, we first need to make a few generalizing observations on ex-
isting techniques. Many of these techniques are known to have a
useful interpretation in a probabilistic framework [Donnelly and
Lauritzen 2006; Salvi 2008]. Since we build upon this framework
in the following, we now introduce it in some detail.

All kinds of shadow maps store data directly computed from the
depth of occluders in shadow map space. In general, a shadow map
with m ∈ N channels is used and a map b : [0, 1] → Rm assigns
the occluder depth z ∈ [0, 1] at one shadow map texel to some vec-
tor b(z) stored in the shadow map. Shadow mapping represents the
simplest case with b(z) := z(z) := z. Filtering is not a concern, so
z can be retrieved from the shadow map and the comparison z < zf
reveals whether a fragment at depth zf ∈ [0, 1] is in shadow.

In PCF the single occluder depth is replaced by many depth samples
weighted according to some filter kernel. Conceptionally, this can
be interpreted as picking depth values from the kernel at random
and is adequately modeled by a probability distribution Z on [0, 1]
telling us the probability for each depth. The probabilities reflect
the filter weights. In this formalism Z(z < zf ) is the probabil-
ity that the randomly picked depth is less than the fragment depth,
which is exactly the filtered shadow intensity computed by PCF.

The difficulty of the expressionZ(z < zf ) lies in its dependence on
zf . The distribution Z is uniquely identified by its left-continuous



(a) The used 16 · 16 kernel. (b) FZ with VSM and ESM approximations.

Figure 2: A comparison of PCF, VSM and ESM on a kernel which
constitutes an ideal case for VSM and ESM. Generally, the approxi-
mations are very coarse. Still two surfaces receive a correct shadow
(green arrows). If there is an additional surface near the depth of
the red arrow, VSM produces light leaking.

cumulative distribution function FZ(zf ) := Z(z < zf ). Being
a real function it stems from an infinite-dimensional space. For
filterable shadow maps we require a compressed representation of
this function taking only a few bytes.

Suppose a shadow map storing b(z) instead of z is filtered using
the kernel previously used for PCF. Once more filtering can be un-
derstood as picking from the kernel at random. The expected value
of the picked vector is the filtered vector:

b := EZ(b) ∈ Rm

It serves as compressed representation of Z. While b(z) provides
redundant information about z, Z is strongly underdetermined by
knowledge of b. The benefit from this linear compression scheme
is that it is compatible with hardware-accelerated texture filtering.
The shadow map is filterable.

Now the challenge lies in approximating FZ(zf ) knowing only b
but not Z. We refer to this approximation as G(b, zf ) ∈ [0, 1]. Its
derivation requires an intelligent choice of b and domain-specific
heuristics. VSM uses b(z) := (z, z2)T, ESM uses b(z) := ec·z

and for CSM b consists of m = 2 · M Fourier basis functions.
VSM, ESM, EVSM and LVSM implement the approximation by
computing lower bounds to FZ(zf ), i.e. G(b, zf ) ≤ FZ(zf ). The
produced shadow is never too dark. CSM is also commonly biased
in such a way that its reconstruction provides a lower bound.

The reasoning behind this ubiquitous choice of lower bounds is
demonstrated in Figure 2. The immediate increase of FZ(zf ) as
zf passes the depth of occluders generally causes surface acne. For
results without artifacts this increase has to occur between the max-
imal depth of the occluder and the minimal depth of the receiver.
Using lower bounds to FZ(zf ) accounts for this requirement in a
well-defined fashion.

Hence, we strive for a technique which guarantees lower bounds.
On the other hand we want little light leaking, i.e. the lower bound
should be as sharp as possible. These two requirements immedi-
ately lead to a well-defined problem [Kemperman 1968].
Problem 1 (General moment problem). Given I ⊆ R, b ∈ Rm,
zf ∈ I and b : I → Rm, consider the search space

S(b) := {S ∈ P(I) | ES(b) = b}

of probability distributions S on I having b as compressed repre-
sentation. We strive to compute the sharp lower bound

G(b, zf ) := inf
S∈S(b)

FS(zf ).

Algorithm 1 Solution to Problem 1 for finite I .
Input: I := {z1, . . . , zn} ⊂ R, b : I → Rm, b ∈ Rm, zf ∈ I
Output: S ∈ S(b) minimizing FS(zf ) (or failure)

1. A := (bj(zi))j∈{1,...,m},i∈{1,...,n} ∈ Rm×n

2. A :=

(
1 · · · 1
A

)
∈ R(m+1)×n, b :=

(
1
b

)
∈ Rm+1

3. p ∈ Rn with pi :=

{
1 if zi < zf
0 otherwise

4. Using linear programming find w ∈ Rn minimizing pT · w
subject to A · w = b and wi ≥ 0 for all i ∈ {1, . . . , n}.

(a) On success: Return S :=
∑n

i=1 wi · δzi (where δzi
denotes a Dirac-delta distribution with support at zi)

(b) On failure: Indicate S(b) = ∅

EZ(b) = b implies Z ∈ S(b) and thus G(b, zf ) is indeed a lower
bound to FZ(zf ) no matter how Z is chosen. At the same time
Z could be any of the distributions in S(b) without violating our
knowledge. By definition of the infimum this means that G(b, zf )
provides the sharpest possible lower bound. Hence, solutions to the
general moment problem provide optimal shadow mapping tech-
niques. Note that the choice of I allows us to include prior knowl-
edge about the admissible domain of depth values.

For I = R and b as stated above, VSM and ESM both provide so-
lutions to Problem 1. LVSM solves Problem 1 if overlap between
depth intervals is disregarded. EVSM computes a lower bound,
which is not sharp in the above sense. If CSM is configured to
compute lower bounds, this bound is not sharp either. In conclu-
sion Problem 1 provides a generic framework for the derivation of
shadow mapping techniques in the spirit of VSM and ESM.

The general moment problem is well-studied and general state-
ments on the structure of minimizing distributions exist [Kemper-
man 1968]. However, obtaining efficient closed-form solutions for
arbitrary choices of b is not possible. We need to identify a single
b that suits the purpose of shadow mapping well while allowing for
an efficient solution.

3.1 Numerical Solution

As an intermediate step we describe a method to compute arbitrarily
good approximations to the exact solution of Problem 1 in arbitrary
cases. This solution is too inefficient for the computation of shadow
intensities in real-time applications, but due to its generality it is
useful for the evaluation of choices of b.

The major difficulty with algorithmic approaches to Problem 1 is
the infinite-dimensional search space S(b). Obviously, this can
be overcome by means of discretization of the considered distribu-
tions, that is by choosing I ⊂ [0, 1] as finite set. As the number of
samples in I grows, we obtain good approximations to I = [0, 1].

S(b) is convex and subject to the linear constraints S(I) = 1 and
ES(b) = b. Within this search space the linear functional FS(zf )
needs to be optimized. For finite I the set S(b) is finite-dimensional
and Problem 1 can be solved using linear programming. Linear
programming has already been used for a special case of Problem
1 in [Prékopa 1990]. This is generalized by Algorithm 1.
Proposition 2. Algorithm 1 solves Problem 1.

Proof sketch. One easily verifies that the constraints in step 4 are
equivalent to S ∈ S(b). Furthermore, pT · w = FS(zf ) and thus
the correct functional is being minimized.



Figure 3: Optimal, lower bounds for two different cumulative dis-
tribution functions (blue) obtained with different choices of b (see
legend). Each plot contains approximations with m = 2 (red),
m = 3 (cyan) andm = 4 (green). The approximations withm = 4
are clearly superior to those with m = 3.

3.2 Choosing Shadow Map Data

In the following we develop a fully automated framework for eval-
uation of possible choices of b : [0, 1] → Rm using Algorithm 1.
Since we are interested in filtered hard shadows, PCF with a 9 · 9
Gaussian filter kernel with σ = 2.4 texels and sophisticated bias-
ing is our reference solution. Therefore, we require an error term
measuring similarity to PCF.

In the end, shadow computations yield the irradiance received
through direct lighting from a single light source. By definition,
techniques solving Problem 1 can only produce various forms of
light leaking as artifact because they never overestimate the shadow
intensity. A simple but meaningful way to quantify this light leak-
ing is the use of an L1-metric on the irradiance field.

To evaluate the performance on a whole scene, we use a single di-
rectional light. In this case, the radiant power received by a surface
is directly proportional to the area covered in the shadow map (ne-
glecting shadows). This enables a convenient image-based evalua-
tion of the error.

First we use the stencil buffer to render a series of shadow maps
displaying not only the foremost surface but all surfaces. Then we
use Algorithm 1 to compute a shadow intensity for each fragment
seen in this stack of shadow maps. Computing the average differ-
ence between these values and the shadow intensities produced by
PCF yields our error term. If we disregard the minor distortions in-
troduced by discretization of the shadow map, this error term agrees
with the L1-error of the irradiance field divided by the total radiant
power. At the same time it can be understood as weighted average
error of the shadow intensity.

We evaluate on four different views of three different scenes pro-
viding challenging but realistic test cases (see supplementary mate-
rial). Since we aim for a substantially higher quality than VSM and
ESM, we are willing to spend some extra memory. Figure 3 indi-
cates that techniques using shadow maps with four channels clearly
outperform techniques with two or three channels. Thus, we fix
m := 4.

It remains to choose the component functions of b : [0, 1] → R4.
A priori it is unclear which sets of functions perform well. This
is the question we are concerned with after all. To have any hope
of solving Problem 1 in closed-form, we focus on a set of 37 rather
elementary, smooth functions ranging from rational functions to ex-
ponentials and trigonometric functions. All of them are given in the
supplementary material among with more details needed for repro-
duction of our results. We evaluate every possible combination of
these functions, leading to

(
37
4

)
= 66045 candidate techniques.

In total, our evaluation requires 392 billion evaluations of Algo-

Figure 4: A histogram showing how many candidate techniques
produce an average error within a particular interval. For ref-
erence the error values resulting from PCF, VSM, ESM and the
choices of b in Equation (1) are annotated.

rithm 1 which we have performed over a time span of several weeks
on a cluster of computers. Due to the large number of candidates,
a complete review of the results is not possible at this point. Fortu-
nately, the data allows for a simple conclusion. Figure 4 demon-
strates that thousands of techniques perform only slightly worse
than the best technique. Thus, there is a large pool of promising
candidates to pick from.

Intuitively, the surprisingly small variations in quality can be ex-
plained by the fact that many smooth functions can be approximated
well by polynomials of degree m = 4 on the interval [0, 1]. If the
first four moments are known, the expectations of all such polyno-
mials can be computed. Thus, knowledge of the expectations of
four smooth functions yields an amount of information similar to
that of four moments.

It remains to select candidates with a small error that also allow for
a closed-form solution of Problem 1. In this regard, two choices of
b are particularly interesting because they are well-studied:

bMSM(z) := (z, z2, z3, z4)T

bTMSM(z) := (sin(2πz), cos(2πz), sin(4πz), cos(4πz))T
(1)

For these choices Problem 1 is known as moment problem and
trigonometric moment problem, respectively. Solving the moment
problem produces an error value of 2.19%. The trigonometric
moment problem actually realizes the minimal measured error of
1.93%. Since both error values are among the smallest, we focus
the remainder of our discussion on these two choices.

4 Moment Shadow Mapping

To find the best solution among the remaining candidates we have
developed efficient algorithms for three different shadow mapping
techniques. We now shortly discuss our findings for all three tech-
niques but then focus on the technique that works best. The other
two techniques are further described in the supplementary material
among with proofs of all related propositions.

Hamburger four moment shadow mapping (Hamburger 4MSM) is
our main algorithm. When there is no need to distinguish it from
the other two techniques we also refer to it as moment shadow map-
ping (MSM). We prefer this technique because it uses the fastest
and most robust algorithm. It solves Problem 1 for I = R and
b = bMSM which is known as Hamburger moment problem with
four moments, hence the name.

Besides its favorable comparison to the other two techniques this
technique also has a unique property, making its use more conve-
nient for developers and designers alike. Whenever a shadow map
is rendered, the near and far plane have to be fixed. Some algo-
rithms such as ESM and CSM produce worse results as the distance



Algorithm 2 Solution to Problem 1 for I = R and b(z) = (zj)mj=1

(Hamburger MSM).
Input: m ∈ 2 · N, b ∈ Rm, zf ∈ R
Output: G(b, zf )

1. n := m
2
+ 1

2. B := (bj+k−2)
n
j,k=1 ∈ Rn×n with b0 := 1

3. z1 := zf
4. c := B−1 · (1, z1, . . . , zn−1

1 )T ∈ Rn

5. Solve
∑n

k=1 ck · z
k−1 = 0 for z and let z2, . . . , zn ∈ R

denote the solutions.
6. Â := (zj−1

i )nj,i=1 ∈ Rn×n

7. w := Â−1 · (1, b1, . . . , bn−1)
T ∈ Rn

8. Return G :=
∑n

i=1,zi<zf
wi

between these planes increases, leaving content creators with the
burden of choosing them tightly. In the supplementary document
we prove that Hamburger 4MSM is the only technique described
by Problem 1 where this choice does not influence the result at all.

Hausdorff four moment shadow mapping (Hausdorff 4MSM) is al-
most identical to Hamburger 4MSM except that it uses I = [0, 1],
i.e. it incorporates the prior knowledge that depth values have to lie
within this interval. This adds a branch to the reconstruction algo-
rithm, which produces slightly darker results for short-range shad-
ows. Unfortunately, this can amplify quantization artifacts when
using 16-bit quantization, which is the main reason why we prefer
Hamburger 4MSM. Still, Hausdorff 4MSM is a viable alternative.

Trigonometric moment shadow mapping (TMSM) is of interest to
us because Section 3.2 has shown that it performs best among
all 66045 candidates. It solves Problem 1 for I = [0, 1] and
b = bTMSM. This problem is substantially harder than the prob-
lems encountered in the other two cases and only sub-problems
have been solved. For the sake of this paper we have developed
a novel algorithm solving it fully. It requires the solution of a quar-
tic equation which is costly and can lead to instabilities. Nonethe-
less, it is useful for direct comparisons in Section 5 and these show
that the reduction of light leaking compared to MSM is small, as
predicted in Section 3.2.

4.1 Our Main Algorithm

We now introduce and analyze an algorithm for Hamburger 4MSM
solving Problem 1 for I = R and b = bMSM. The practical im-
plementation and use of this algorithm is discussed in Section 4.2.
Closed-form solutions to the present problem are known [Kreı̆n
and Nudel’man 1977] and corresponding algorithms have been de-
signed [Tari 2005]. They even generalize to an arbitrary even num-
ber of moments m ∈ 2 · N. However, existing algorithms are op-
timized for an entirely different scenario. We suggest an algorithm
that is well-suited for the present real-time application. It takes the
place of Chebyshev’s inequality in VSM. In fact, VSM arises as
simplest special case for m = 2, though we are more interested in
m = 4.

The sought-after solution is known to be realized by a linear combi-
nation S ∈ S(b) of n := m

2
+1 Dirac-δ distributions. To minimize

FS(zf ) one of the Dirac-δ distributions must have support at zf . It
can be shown that the remaining Dirac-δ distributions have to be
located at the roots of a special polynomial. Once these roots are
computed, the weights of the linear combination are determined by
the system of linear equations ES(b) = b and G(b, zf ) = FS(zf )
can be evaluated. All of this is done by Algorithm 2.

Proposition 3. If Algorithm 2 produces positive-definite B and
cn 6= 0, it solves Problem 1 correctly. If a positive-definite
B ∈ Rn×n is fixed, cn = 0 occurs for no more than n − 1 dif-
ferent values of zf .

Obviously, the two conditions of Proposition 3 require further at-
tention. The case cn = 0 leads to undefined results but is quite
unproblematic in practice because it only occurs for isolated values
of zf . The most elegant way to avoid this case is to use Hausdorff
4MSM instead of Hamburger 4MSM but there is little gain from
doing so.

The condition on B is not as strong as it might seem. Its anal-
ysis actually reveals a strength of Hamburger 4MSM [Kreı̆n and
Nudel’man 1977, p. 63, p.78].
Proposition 4. Let b = EZ(b) for some probability distribution Z
on R. Then the matrix B is symmetric and positive semi-definite.
Furthermore, the following statements are equivalent:

1. detB = 0,

2. Z is the only distribution with EZ(b) = b,

3. Z is a linear combination of at most m
2

Dirac-δ distributions.

This special case is highly relevant. It is common for filter ker-
nels in shadow maps to contain only a small number of different
surfaces and the depth of these surfaces is often nearly constant.
This situation is approximated well by a linear combination of one
Dirac-δ distribution per surface. The majority of filter kernels on
a shadow map can be approximated by no more than two Dirac-
δ distributions. Proposition 4 tells us that Hamburger 4MSM can
achieve perfect reconstruction in this case because Z is uniquely
determined by the equation EZ(b) = b.

Adding a separate branch for this case to Algorithm 2 is not diffi-
cult. Essentially, it suffices to replace c by a vector in the kernel
of B. However, we found that such a solution does not behave ro-
bustly because it is difficult to distinguish the two cases. Instead,
it is better to implement the algorithm such that it behaves robustly
even for nearly singularB. AsB approaches singularity, the recon-
struction G better approximates the ground-truth FZ .

4.2 Implementation

Implementation of Hamburger 4MSM is a two-step procedure
much like VSM. First, a moment shadow map needs to be rendered.
This works almost identical to rendering a common shadow map
except that the four-channel moment shadow map stores four mo-
ments of the depth in shadow map space, z, z2, z3, z4, rather than
storing only the depth, z. The benefit from this redundant infor-
mation is that linear filtering operations such as a two-pass Gaus-
sian blur or generation of mipmaps may be applied to the moment
shadow map without losing too much information.

Second, a filtered sample from the moment shadow map and the
depth of a fragment in shadow map space need to be fed into Al-
gorithm 2 to compute a filtered shadow intensity for this fragment.
Performing this computation in a numerically stable fashion is non-
trivial as was previously discussed in a blog post about a failed
attempt to develop moment shadow mapping [Salvi 2007]. In the
following, we derive a numerically stable implementation of Algo-
rithm 2 for m = 4 which we summarize in Algorithm 3.

For m = 4, Algorithm 2 requires the solution of the 3 × 3 linear
systems of equations B · c = (1, z1, z

2
1)

T and Â · w = b̂ and the
solution of the quadratic equation c3 · z2 + c2 · z + c1 = 0. The
latter can be solved with the quadratic formula without running into
issues. The system Â·w = b̂ does not need to be solved completely.



Algorithm 3 Hamburger 4MSM (special case of Algorithm 2).
Input: Filtered sample from the moment shadow map b ∈ R4,
fragment depth zf ∈ R, bias α > 0 (e.g. α = 3 · 10−5)
Output: Shadow intensity G(b, zf )

1. b′ := (1− α) · b+ α · (0.5, 0.5, 0.5, 0.5)T
2. Use a Cholesky decomposition to solve for c ∈ R3: 1 b′1 b′2

b′1 b′2 b′3
b′2 b′3 b′4

 · c =
 1
zf
z2f


3. Solve c3 ·z2+c2 ·z+c1 = 0 for z using the quadratic formula

and let z2, z3 ∈ R with z2 ≤ z3 denote the solutions.
4. If zf ≤ z2: Return G := 0.

5. Else if zf ≤ z3: Return G :=
zf ·z3−b′1·(zf+z3)+b′2

(z3−z2)·(zf−z2)
.

6. Else: Return G := 1− z2·z3−b′1·(z2+z3)+b′2
(zf−z2)·(zf−z3)

.

Dependent upon the location of zf with respect to z2 and z3, the
shadow intensity G evaluates to 0, w2 or 1 − w1 (assuming z2 ≤
z3). Corresponding closed forms are given in Algorithm 3.

It remains to solve B · c = (1, z1, z
2
1)

T. From Proposition 4
we know that B is symmetric and positive semi-definite. Thus,
a Cholesky decomposition of the form B = L ·D · LT can be em-
ployed with L ∈ R3×3 being lower triangular andD ∈ R3×3 being
diagonal. This decomposition is known to behave robustly even for
nearly singular matrices [Trefethen and Bau 1997, p. 176]. The
special structure of B can be exploited for further optimizations.

If Algorithm 2 is implemented like this and fed with double preci-
sion moments, it produces results which agree with those generated
by Algorithm 1. However, numerical noise appears as soon as the
input moments are stored in single precision. This can be explained
through Proposition 4. In many relevant cases B is nearly singular
but still positive semi-definite. Quantization errors can give rise to
negative eigenvalues making Problem 1 insolvable.

Storing moments at double precision in the moment shadow map
imposes an unacceptable memory footprint. We need a method
to compensate for the loss of information introduced by quantiza-
tion. Above all else this method has to guarantee robust results. We
found that a simple biasing on the input works best in this regard.

We use a biased moment vector b′ := (1 − α) · b + α · b? where
b ∈ Rm is the unbiased but quantized moment vector, 0 < α � 1
is the strength of the bias and b? ∈ Rm is an appropriately chosen
constant vector. This biased moment vector corresponds to the bi-
ased distribution Z′ := (1− α) · Z + α · Z? where EZ?(b) = b?

and thus G(b′, zf ) is a lower bound to FZ′(zf ). For small α this
should not introduce a large error.

It remains to choose b? = EZ?(b). Ideally, detB grows as quickly
as possible as α � 1 is increased. Assuming a particular distribu-
tion of b, this requirement can be optimized in closed-form leading
to b? =

(
1
2
, 1
2
, 1
2
, 1
2

)T or equivalently Z? = 1
2
· (δ0 + δ1).

Algorithm 3 produces robust results using a bias of α = 2 · 10−6

and single precision throughout the pipeline. Note that this bias
is not scene dependent. Under some circumstances a rare artifact
may occur where individual pixels obtain wrong shadow intensities
outside the interval [0, 1]. It is related to c3 approaching zero. This
can be made less malicious by clamping G and eliminated entirely
by using Hausdorff 4MSM.

4.3 Optimized Moment Quantization

A truly efficient implementation of 4MSM should consume no
more than 16 bits per moment. With a canonical approach this
leads to unacceptable artifacts. Information theory provides a natu-
ral framework to improve on this situation. To employ it we define
a random variable xb on [0, 1]m modeling the distribution of the
moment vector b within a filtered moment shadow map and analyze
its differential entropy [Cover and Thomas 2001, p. 13, p. 229].
Definition 5. Let pb : Rm → R≥0 denote the probability density
function of xb. Then the differential entropy of xb is given by

h(xb) := −
∫
Rm

pb(b) · log2 pb(b) d b.

The differential entropy h(xb) measures approximately the amount
of entropy which is lost in a uniformly quantized version of xb due
to a non-uniform distribution of xb [Cover and Thomas 2001, p.
229]. More specifically a quantized version of xb using four 16-bit
integers to represent the unit tesseract [0, 1]4 has an entropy of ap-
proximately 4 · 16+h(xb) bits. Note that h(xb) is always negative
in the present case.

Storing data with a low entropy means that the available memory
is used inefficiently. Hence, we should maximize h(xb) by trans-
forming b prior to storing it. It is desirable that the transformed data
can still be filtered linearly. This requirement restricts our choices
to affine transforms θm : Rm → Rm maximizing h(θm(xb)). If
we store θm(b(z)) in the moment shadow map, we can take fil-
tered samples and reconstruct b using θ−1

m . The amount of entropy
we gain this way is directly related to the stretch of the volume
| det θm|.
Proposition 6. For regular θm

h(θm(xb)) = h(xb) + log2 | det θm|.

Hence, we need to maximize | det θm|. At the same time θm has
to map b([0, 1]) into the set of representable vectors [0, 1]m. For
an arbitrary affine transform this can be enforced by scaling and
translating θm(b([0, 1])) such that its axis-aligned bounding box
is [0, 1]m. This way, we can find the optimal θm by means of
numerical optimization. The resulting transform for m = 4 is

θ4(b) = (0.0359558848, 0, 0, 0)T+−2.07224649 32.2370378 −68.5710746 39.3703274
13.7948857 −59.4683976 82.035975 −35.3649032
0.105877704 −1.90774663 9.34965551 −6.65434907
9.79240621 −33.76521106 47.9456097 −23.9728048

 · b
and for m = 2 (i.e. VSM) we obtain

θ2(b) =

(
1 0
4 −4

)
· b.

This way we gain 12.3 and 2 bits of entropy, respectively. For
4MSM this improvement makes 16-bit quantization applicable. In
our experiments a stronger bias of α = 3 · 10−5 is required and
short-range shadows suffer from slight quantization noise but the
halved memory and bandwidth requirements easily compensate for
these drawbacks. For VSM the optimized quantization leads to a
notable reduction of quantization artifacts.

For visualization purposes we can also consider the three-
dimensional casem = 3. In this case we gain 6.2 bits of differential
entropy and the three-dimensional curves and convex hulls can be
visualized (see Figure 5). Note that the original convex hull is very
flat whereas the expanded convex hull fills the unit cube nicely.



b([0, 1]) convb([0, 1]) θ3(b([0, 1])) conv θ3(b([0, 1]))

Figure 5: A comparison of the curves b and θ3 ◦ b and their hulls
containing valid b and θ3(b) for m = 3. The transformed volume
is 0.41 and it is 73.9 times larger than the untransformed volume.

(a) PCF, 16-bit, 1.13ms. (b) VSM, 16-bit, 0.89ms.

(c) ESM, c = 80, 32-bit, 0.9ms. (d) TMSM, 16-bit, 1.87ms.

(e) Hamburger 4MSM, 16-bit, 1.13ms. (f) Hausdorff 4MSM, 32-bit, 1.46ms.

Figure 6: The shadow of a flying dragon cast onto a stair. This
challenging scenario provokes typical artifacts for all shown tech-
niques. Artifacts are magnified (red) below the PCF ground truth
(green). The frame time for rendering without shadows is 0.44ms.

5 Results and Conclusion

4MSM provides an excellent approximation to PCF and produces
less artifacts than other filterable shadow maps as shown in Figure
6. Shadows cast over extremely short ranges can suffer from slight
quantization noise and light leaking (Figure 6e, 6f). The stronger
bias α required for 16-bit quantization strengthens light leaking
slightly (Figure 6e). TMSM produces just as much light leaking
as Hausdorff 4MSM but suffers from robustness issues and a poor
run time (Figure 6d).

With 16-bit quantization Hausdorff 4MSM is only slightly slower
than Hamburger 4MSM and produces slightly darker shadows over
short ranges. However, this can also amplify quantization artifacts.
Hence, we consider Hamburger 4MSM preferable. Figure 1 and 8
show more results of this technique. Additionally, we recommend
watching the supplementary video. Among other things it demon-
strates the immensely positive effect of multisample antialiasing
(MSAA) applied to the moment shadow map. This hardware fea-
ture is not applicable for PCF [Donnelly and Lauritzen 2006].

For our run time comparison in Figure 7 we use an nVidia GeForce
GTX 780 and Direct3D 11 on a scene with one directional light and
a shadow map uniformly covering the whole scene. We observe that
the frame time for filterable shadow maps is governed by the mem-
ory per texel. VSM with 32-bit quantization and 4MSM with 16-bit
quantization perform almost identical in spite of the greater com-
plexity of Algorithm 3. VSM with 16-bit quantization (not shown)
performs identical to ESM. Hamburger 4MSM outperforms PCF
for large output resolutions, large filter kernels and small shadow
maps. Note that PCF uses hardware support to quarter the number
of taps and that ESM is implemented without fallback to PCF.

In conclusion, 4MSM provides filterable shadow maps with an un-
precedented quality at a moderate cost of 64 bits per texel. Ar-
guably, 4MSM is the best possible shadow mapping technique us-
ing this amount of memory. It should provide a good solution for
many applications requiring high quality filtered hard shadows and
we are hoping that it will enable new applications. In regard of 4K
rendering, the demonstrated amortization of moment shadow map-
ping at greater output resolutions is promising. To the best of our
knowledge, 4MSM is the first application of the theory of moments
in a graphics context. This powerful theory holds the promise of
providing many efficient heuristics for real-time graphics.

Figure 7: The frame time for the shown scene plotted against the
main parameters affecting the performance. Where applicable, 4x
MSAA is used for the shadow map and for main scene rendering.
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